Design Engineer Logo
Visit Repo
Open Graph preview

MCP Server Qdrant

Contribute to qdrant/mcp-server-qdrant development by creating an account on GitHub.

Site favicon
🗄️ Data

Overview

mcp-server-qdrant

Description:
A semantic memory server using Qdrant vector search engine for storing and retrieving context

Category: Vector Storage & Retrieval

Overview:
This server implementation provides a semantic memory layer powered by Qdrant vector search engine. It offers two main functionalities:

  • Store memories in the Qdrant database
  • Retrieve memories using semantic search queries

Key features:

  • Automatic collection creation
  • Supports FastEmbed models for encoding
  • Default model: sentence-transformers/all-MiniLM-L6-v2
  • Flexible deployment: cloud or local database options
  • MIT Licensed

Installation & Usage:

Using uv (recommended):

uv run mcp-server-qdrant \
--qdrant-url "http://localhost:6333" \
--qdrant-api-key "your_api_key" \
--collection-name "my_collection" \
--fastembed-model-name "sentence-transformers/all-MiniLM-L6-v2"

Via Smithery:

npx @smithery/cli install mcp-server-qdrant --client claude

Configuration:

{
  "qdrant": {
    "command": "uvx",
    "args": [
      "mcp-server-qdrant",
      "--qdrant-url", 
      "http://localhost:6333",
      "--qdrant-api-key",
      "your_api_key",
      "--collection-name",
      "your_collection_name"
    ]
  }
}

Environment Variables:

  • QDRANT_URL
  • QDRANT_API_KEY
  • COLLECTION_NAME
  • FASTEMBED_MODEL_NAME
  • QDRANT_LOCAL_PATH

Note: QDRANT_URL and QDRANT_LOCAL_PATH are mutually exclusive