MCP Server Qdrant
Contribute to qdrant/mcp-server-qdrant development by creating an account on GitHub.
🗄️ Data
Overview
mcp-server-qdrant
Description:
A semantic memory server using Qdrant vector search engine for storing and retrieving context
Category: Vector Storage & Retrieval
Overview:
This server implementation provides a semantic memory layer powered by Qdrant vector search engine. It offers two main functionalities:
- Store memories in the Qdrant database
- Retrieve memories using semantic search queries
Key features:
- Automatic collection creation
- Supports FastEmbed models for encoding
- Default model: sentence-transformers/all-MiniLM-L6-v2
- Flexible deployment: cloud or local database options
- MIT Licensed
Installation & Usage:
Using uv (recommended):
uv run mcp-server-qdrant \
--qdrant-url "http://localhost:6333" \
--qdrant-api-key "your_api_key" \
--collection-name "my_collection" \
--fastembed-model-name "sentence-transformers/all-MiniLM-L6-v2"
Via Smithery:
npx @smithery/cli install mcp-server-qdrant --client claude
Configuration:
{
"qdrant": {
"command": "uvx",
"args": [
"mcp-server-qdrant",
"--qdrant-url",
"http://localhost:6333",
"--qdrant-api-key",
"your_api_key",
"--collection-name",
"your_collection_name"
]
}
}
Environment Variables:
- QDRANT_URL
- QDRANT_API_KEY
- COLLECTION_NAME
- FASTEMBED_MODEL_NAME
- QDRANT_LOCAL_PATH
Note: QDRANT_URL and QDRANT_LOCAL_PATH are mutually exclusive